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COUPLED AMPLIFIER MODULE FEED NETWORKS
FOR PHASED ARRAY ANTENNAS

INTRODUCTION AND SUMMARY OF RESULTS

The high cost of phased-array antennas prevents their use in many applications where electronic
scanning could provide large performance improvements relative to mechanically scanned antennas.
One reason for the high cost of conventional phased-arrays is their parallel construction: each radiating
element has its own phase control. Previous approaches to reducing system cost by even modest reduc-
tions in the number of phase-shifters result in objectionable increases in sidelobe levels [1]. Although
the feed networks discussed in this report allow for greatly reduced numbers of phase-shifters, there are
other components that must be added. Thus the cost-effectiveness of the new approach is an issue for
further study.

Figure I depicts a linear array corporate feed, illustrating the one phase-shifter/element require-
ment that characterizes conventional design [2). Figure 2 shows the functionally equivalent coupled
amplifier module (CAM) feed. Phase control is provided only at the edges of the CAM feed, and
requires just one phase shifter. As shown in Fig. 3, each module in the CAM feed consists of a hard-
limited amplifier whose input is the sum of sampled outputs from the two adjacent modules.

RADIATING
ELEMENTS

Fig. I - Four-element linear array employing conventional 2# PHASE SNFTERS
hybrid junction corporate feed (3 phase-shifters)

H4YBRID JUNCTION
S; CORPORATE FEED

RADIATINELEMENTSr

NONRADIATIhG
TERMINATIONS X3 X5

AMPLIFIER/ f2 3 f4 15
LIMITER
MODULES

PHASE
SNIFTER

HYBRID
JUNCTION

Fig. 2 - Four-element linear array employing coupled amplifier module feed

Manuscript approved November 8, 1982.



RICHARD A. STEINBERG

Xn

OUTPUT r

flu f"+ 1
POWER
DIVIDER

I
I I

COUPLER j I

I I
HARD LIMITER f

5-OL

AMPLIFIER I

POWER
COMBINER I

-J

Fig. 3 - Amplifier/limiter module for
coupled amplifier module feed

Since the outputs of the amplifier/limiter modules are all of unit amplitude, all information is
contained in their phases, 0,(7). where n is the module index and " is the time. It is shown that the
dynamics of the CAM network are governed by a simple diffusion equation on the phases O(T).

The main body of this report is devoted to developing solutions to the phase diffusion equation.
Consideration is given to:

* steady-state phase distributions for fabricationally perfect modules, i.e., modules for which the
power dividers effect exactly equal two-way power division;

* the complete transient phase distribution for perfect modules; and

* steady-state phase distributions for fabricationally imperfect modules, including those for which
the imperfection can only be characterized statistically.

The phase diffusion equation can be solved exactly when the modules are fabricationally perfect,
with the following results.

* While the CAM network establishes a linear phase progression in the steady state, the phase
difference between the outputs of adjacent modules is limited to the interval [00, 900). If the
phase gradient were ever to reach 900 per module, the signals summed at the input to the hard-
limited amplifier would be 1800 out of phase and therefore would add to zero. Since it is thus
impossible to develop phase gradients greater than ±90° per module, two modules/element are
required to achieve full hemispheric scanning capability (cf. Fig. 2). (Only one module per ele-
ment may be required for limited scan applications, however.)

0 The exact transient response takes the form of a modal expansion in which each of the spatial
modes has a characteristic decay time. Since the transient response is dominated by the spatial

2
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mode having the slowest decay time, a simple and highly accurate one-mode-approximation
results.

0 The settling time of the CAM network increases as the square of the number of modules. Thus,
satisfaction of bandwidth requirements may necessitate introducing additional "speed-up" phase
shifters spaced at regular intervals along the feed network.

The analysis for fabricationally imperfect modules permits only approximate solutions for the
steady-state phase distributions. Defining the phase gradient error as the difference between the actual
phase gradient and the ideal constant gradient, an expression is developed for the phase gradient error
for arbitrarily nonuniform CAM structures. Assuming that the nonuniformities from one module to
the next are independent, equal-variance random variables, an expression for the root-mean-square
(RMS) phase gradient error is then derived. It follows from this analysis that the RMS phase gradient
error increases as the square root of the number of modules in the CAM network; also, the error is
proportional to tan 46, where A0 is the nominal phase increment per module. An example is given
for a 9-module feed for which a 1% RMS error in the power splits gives rise to about a 1V RMS phase
gradient error, for an assumed nominal phase gradient of 450 per module.

Finally, it is shown that the CAM technique can be applied to 2-D antenna arrays. The CAM
feed network for a 2-D rectangular array of arbitrary size requires just three phase-shifters.

In most practical antennas the amplifier/limiter modules feeding the radiating elements would be
followed by power RF amplifiers. In receive mode, the coupled module structure would be used as a
local oscillator chain to convert the antenna outputs to intermediate frequency (IF).

MODEL FORMULATION

Figure 4 shows an idealized model for the individual amplifier/limiter modules. The principal
idealization is in representing the hard limiter as a time-variable amplifier whose gain N,(r) automati-
cally adjusts itself to provide a unit amplitude output, i.e.,

X,(T) - exp j@(), ()

where n is the module index, and the normalized time ? is defined as

- (tiT),

where T is the delay time per module (cf. Fig. 4). The gain N, (r) is a function of time and is generally
different from one module to the next,

N.() ; N.(), ni m. (2)

We preserve sinusoidal waveforms by implicitly assuming that the hard limiter in Fig. 3 is followed by a
high-Q tuned circuit.

The gains B.- and F.+1 in Fig. 4 are determined from the power splits effected by the two power
dividers in Fig 3 and are respectively referred to as the backward- and forward-coupling coefficients.
We generally design the power splitters to achieve the ideal,

B. - F.. (3)

Departures from the ideal are unfortunately inevitable due to fabricational imperfections in the power
splitters.

From Figs. 2 and 4,

x,(r + 1) - N,(r)[B,,x,+(-r) + Fx,._1 (r)].

3
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OUTPUT X, (T)

FIXED GAIN l()F, ~ 1 r
AMPLIFIERS'

DELAY ELEMENT IeiJwT
(T SECONIDS)

VARIABLE GAIN
AMPLIFIERIN, )

SUMMER b. Wr b,+~r

Fig. 4 - Idealized model of amplifier/ limiter
module depicted in Fig. 3

Thus, from Eq. (1),

e N, (7)[Be jon+I(?) + Fnej01I(7)] (4)

where n = 1, 2, W. ( - 1). Solution of Eq. (4) generally requires the specification of boundary
phases at n - 0 and n = M

00 - 0 (5a)

[0'-MA4o - r -2r, 7< 0
9M(T1e~..M ,.s.ff ~O,(5b)

and the initial phases

The terms r -2v and s -2v appearing in Eq. (5b), where r and s are integers, reflect the fact that the
phase difference (Om - 00) established by the phase-shifter (cf. Fig. 2) is physically determinate only to
within an integral multiple of 2wr. Also, we note that the number of modules in the feed network is
equal to (M - 1). (For example, M - 6 for the network depicted in Fig. 2.)

For future use we define the quantity cim(0) as the step change in boundary phasing imposed by
the phase-shifter at r -0,

aM(O) - mod 2v(Ok - OMW~ - W16-10- (7)

The function mod 2, ()appearing in Eq. (7) expresses its argument in modulo - 2r, i.e., as a number
between 0 and 2r.

4
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THE PHASE DIFFUSION EQUATION

It is shown in Appendix A that Eq. (4) can be recast as

0(T + I) - Oen+I(T) + 0,-1(r) - e, tan ( [.+i(r) - 0,_ (r)]I, (8)

which we refer to as the phase diffusion equation. The parameter e. provides a measure of fabrica-
tional imperfection, being defined as

2. -BIF.B(.9F.,,- S. 9

Equation (8) is derived in Appendix A subject to the assumption that

2e, tan 4- [0,+ 1(7) - 9.-1(7)) << 1. (10)

Thus, Eq. (8) is only approximately correct when e, ;d 0; however, the simpler, less general equation
that results when e. - 0 is exactly equivalent to Eq. (4) when F. - B.

EQUILIBRIUM PHASE DISTRIBUTIONS

Analysis

Equilibrium solutions of Eq. (8) are obtained by recognizing that

lim 0.(T + 1)- lim @'(7) 0 (I!)

the final equality being a convenient notational convention. With the additional definition

08  0 - 0.i (12)

it follows from Eqs. (8) and (11) that in the infinite-time limit

AOn+1 - AS. + e. tan -L(AO+, + ASn). (13)
2

If we are to have a uniform phase gradient,

0,- A9,1 - constant, (14)

it follows from Eqs. (9) and (13) that we must have equal forward and backward coupling,

F. - B., (15)

i.e., a. - 0. Feed networks for which Eq. (15) obtains are referred to as "fabricationally perfect." If F.
;d B, i.e., if e. ;9 0, for one or more values of P, the network is referred to as "fabricationally imper-
fect.!

From Eqs. (5) and (12),

i A0m - (0 - 00) -0O, (16)

and
40 tO. -(0,% - 00) - MAO# - s •27', (17)!

5
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where s is an integer. The term s 27r appearing in Eq. (17) reflects the fact that the phase difference
(,t, - 00) established by the phase shifter (cf. Fig. 2) is physically determinate only to within an
integer multiple of 2r.

From Eq. (14),

A4m- nag,, n-l, , ... M.
r(-i

The equilibrium phase distribution for fabricationally perfect CAM networks follows from Eqs.

(16), (17), and (18).

A9,(oo) - A - (s 2w/M)
.(o) - n4 (o) I n -l21...., (19)

where s is an integer.

To complete the specification of the physical problem, and to provide necessary information for
calculating the indeterminate integer s appearing in Eq. (19), we must specify values for the initial
phase distribution, Eq. (6). Assuming that the network is initially in an equilibrium state we may write

0,(T) - - n40, n- 1, 2, ... M, 7 <0. (20)

For initial conditions and boundary conditions specified by Eqs. (20) and (5), respectively, it has
been found by computer simulation that the only values of sever to occur are s - 0 and s = 1.

Figure 5 shows the initial phase distribution, Eq. (20), and the two possible final phase distribu-
tions (Eq. (19) with s - 0 and s = 1). We now summarize some results from Appendix B addressing
the question of which of these two final phase distributions is ultimately established.

For positively coupled lattices, F > 0,

.0, 0 4, at(O) < (r - 2AO, o1
s 1, otherwise. (21)

For negatively coupled modules, F < 0,

.0, 0 4 aM(O) < (31r - 2&,10)  (2

s - , otherwise. (22)

We recall that the quantity au(0) appearing in Eqs. (21) and (22) was defined in Eq. (7) as the step
change in boundary phasing imposed by the phase-shifter at time T - 0.

To summarize, the equilibrium phase distribution 0. (or AO,) is calculated subject to two assump-
tions:

" We assume that the network is initially in an equilibrium state characterized by the initial phase
gradient 40,,(r) - Ako, r < 0.

* We assume that the setting of the phase control in Fig. 2 is changed by an amount
mod 2, (Ok - O) - aM(O), having a value between 0 and 27r.

6
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tMA#  i f 0

n

MA#- 2w @I(

M
1 2 3 4 8 6 7 8 9

MODULE OUTPUTS -f-
#-SIFTER

INPUT

Fig. 5 - Phase distributions for an 8-module linear lattice (M - 9).
The initial phase distribution 0. has a phase gradient of A# 0 per
module. The initial distribution evolves into one of two possible final
distributions, 9i, referred to as the s - 0 and s - I equilibrium
phase distributions. The s - 0 distribution is established if 0 <
mod 2, (ej - O) < (ir - 2100).

The network will settle into a new equilibrium phase distribution that can be calculated as follows.

* The value of s is computed from Eq. (21) if F > 0 or from Eq. (22) if F < 0.

" The quantity A4 is computed from the equation

A0 - A¢o + [m(O)/M]. (23)
Since csM(0) is always positive by definition (cf. Eq. (7)), Eq. (23) ensures that 40 > A¢O,
always.

* The values for A4 and s are substituted into Eq. (19) to obtain the new equilibrium phase distri-
bution.

Appendix B provides expanded discussion of the equilibrium phase distributions.

Phasing Limitations and an Alternative Module Structure

Inspection of Fig. 5 shows that development of the s - 0 phase distribution corresponds to the
evolution of a larger phase gradiett than existed initially,

A0N > 4,0, s-0. (24)

7I.I

...............
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It follows from Eqs. (21) and (24) that

aM(O) < (r - 2A40 ), (25)

from which, together with Eqs. (19) and (7), we can show that

(A, - A00) < ( - 2Av 0 )/M. (26)

Equation (26) indicates that the achievable increment in phase gradient becomes ever smaller as the
initial gradient approaches 90' per module. Thus, phase gradiens IA0, I > 900 per module are unattain-
able with positively coupled lattices (F > 0). Similarly, we find that phase gradients 0 < 1A0, I < 90' per
module are unattainable for CAM lattices with negative coupling (F < 0). Appendix B provides a
more detailed discussion of the phasing limitations.

One method of achieving full hemispheric scanning capability (up to ± 180* phase differential

between antenna elements) is to allocate two modules per radiating element (cf. Fig. 2). Alternatively,

only one module per antenna need be used if the module is designed as shown in Fig. 6. As compared
with the original Fig. 3 module, the Fig. 6 module incorporates a 1800 1-bit phase-shifter. The
modified CAM network is made to simulate the original network for small phase gradients, 0 < A46 <
90* per module, by setting all I-bit phase-shifters to their 0°-state. Scanning at large angles, requiring
90 ° < A0,, < 1800 per module, is achieved by setting all 1-bit phase-shifters to their 180°-state
(corresponding to negative coupling, F < 0). Thus, utilizing the Fig. 6 module rather than the Fig. 3
module we may replace all nonradiating terminations in Fig. 2 with radiating elements and still retain
full hemispheric scan. Of course, the expense saved in halving the number of modules may be more
than completely offset by the increased cost per module.

OUTPUT

fn r f., _ fn -

POWER DIVIDER

# -SNIFTER I I

COUPLER

HARD LIMITER X

AMPLIFIER

POWER COMBINER

.A. b.E , , '']

T

Fig. 6 - Amplifier/limiter module incorporating I-bit SO' phase-shifter.
permitting full hemispheric scan with just one module per radiating ele-
ment

8
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TRANSIENT PHASE DISTRIBUTION AND SETTLING TIME

We presently assume that the CAM lattice is fabricationally perfect, i.e., that Eq. (15) obtains for
all values of n. It follows from Eqs. (8), (9), and (15) that

0,( + 1) - - [0, +1() + 0._1(T)J. (27)

Equation (27) is solved in Appendix C by the separation of variables method. The exact solution is

O,,r) - 0,(-o) + 2[40.(-o) - A40] 1 (-,) k sin (nkrIlM) [cos (krt/M)] "+4' ,  (28)k-1 I sin (kwr/M) I

where [M/21 denotes the integer part of (M/2), quantity A0n(oo) is the equilibrium phase distribution,
Eq. (19), and

I + + 0, (n +i1 + M) odd (29)

- - 1 , (n +r +M) even.

The factor [A0.(oo) - A, 0 ] appearing in Eq. (28) may be calculated from Eqs. (19) and (23) as

f,&O. (c) - A.0 ] - JaM(0) - s21r]/M, (30)

where aM(O) is the step-change in edge phasing, as defined by Eq. (7), and s is given by Eq. (21) if
F> 0 or Eq. (22) if F < 0.

Values of 0.(r) calculated from Eq. (28) have been compared with the results of iterative numer-
ical solutions of Eq. (4). The exact equality of 0, values calculated by these two totally different
methods is taken as a validation of Eq. (28).

In the limit (knIM) < < 1, valid for small k,

[cos (kir/M)]T - e-' (31)

where the time constants r k are given by

k (M/k) 2. (32)

It follows from Eqs. (31) and (32) that the k > 2 terms in Eq. (28) decay much more rapidly with time
than does the k - 1 term. Thus, we expect the long-time behavior of the phase distribution to be
dominated by the k I 1 term,

0(r) =0O(oo) - 2(4o.(oo) - a in (n/M 1sin (n ./M) ro/,
sin r/M) I e . (33)

where A is again given by Eq. (29), and the settling time r, is defined as

Ts = 71r - M'/5. (34)

A simple single-mode approximation also may be obtained for the phase gradient 40, Eq. (12),

Ai,(r) 0.(oo) - 2400 ( ) -0, &0I cos [(n + I - 1)7/IM e - '/ ' . (35)

The single mode approximations, Eq. (33) and (35), are highly accurate for

1> ?".

We have compared the approximate solution, Eq. (35), with the complete analytic solution
obtained from Eq. (28) and with iterative computer solutions of Eq. (4). The sample calculations
presented below assume that

9
I
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(A/, Adbtp a 11 (0)) = (9, 60 ', 451). (36)

That is. we assume an 8-module feed initially in an equilibrium state described by Eq. (20) with a uni-
form phase gradient of 600 per module. We further assume that the equilibrium prevailing for r < 0 is
disturbed at r = 0 by step-increasing t-he phase control in Fig. 2 by a,)(0) = 45' . We find from Eqs.
(21) and (23) that the network will eventually settle into a new equilibrium phase distribution given by
Eq. (19) with

A8,(oo) A - 650. (37)

For this calculation (and all other calculations) the numerical solution was in exact agreement
with Eq. (28).

Figure 7 shows the phase distribution as a function of module index n at two values of time
(T - 32 and r - 48). for the specified parameter values, Eq. (36). Approximation Ai, is indistinguish-
able from the exact solution on the scale of Fig. 7.

66'

T :2r.32 -3rs48

Fig. 7 - Phase distribution for an 8-module feed at two
values of time (7 - 32 and r- 48). Assumed parameter
values were (M, A50O c4(O)) - (9. 60*, 451. In the 65 1 1 1 1 
infinite-time limit a uniform phase gradient is established, 2 3 4 5 6 T a 9
A@.(oo) - A4 - 65".

64 -

Figure 8 depicts the transient development of A0 1(r) obtained by the exact methods of solution.
Figure 9 shows the difference between the exact and approximate solutions for A0 1(r) as a function of
time. We see from Fig. 9 that the error incurred in using Eq. (35), rather than the complete solution,
is less than 0.13' for r > r, - 16.

MODULES WITH FABRICATIONAL IMPERFECTIONS

Approximate Formulation for the Equilibrium Phase Distribution

Up to this point in our analysis we assume that all components in the CAM network. Fig. 2, can
be fabricated to arbitrarily precise specifications. In particular, we assume that the power splitters have
been fabricated to achieve perfectly equal forward and backward coupling, Eq. (15). It is of some
interest to quantify how component imperfections degrade the phasing accuracy of the CAM network.

10
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A

1.00

A*: 6::0.56

630 0. 20

- - 0.136

620" 0.100-

0.05*

A* 0 :60I I I I I 1_
20 40 60 so 

t

L I I I 0 .0 2 " 1 1
0 I 2 3 4 5 0 10 20 30

Fig. 8 - Transient development of A81 () for the same Fig. 9 - Values plotted are the difference
parameter values as Fig. 7. Values at r - 2-", (point A) between the exact value of AG1 (Fig. 8) and the
and r - 3r, (point B) correspond to points A and B in Fig. approximate value Ail obtained from Eq. (35).
7. Values given can be obtained from either of the two Error incurred in using Ail is less than 0.13 ° for
exact methods of solution: the complete analytical solution, i. > TS.
Eq. (23). or by numerical solution of Eq. (4).

We presently relax Eq. (15) somewhat, assuming instead that

0 < le.I << t, (38)

for at least one value of n (cf. Eq. (9)). Our interest is in obtaining the solution of Eq. (13). We have
shown previously that when e. - 0, n 1, 2, ... (M - 1), the equilibrium phase distribution is a
uniform phase gradient, as desired,

AO°(oo) - A0 0 + [aM(0) - s • 21rl/M, (39)

or, equivalently,

&0'(oo) - 40 - s(2irM). (40)

The superscript 0 on A9°(oo) serves as a reminder that Eqs. (39) and (40) are derived subject to the
assumption that E. - 0. We now define a new quantity A0, that measures the degree to which the
actual phase gradient AO, departs from the ideal, i.e.,

- AS,(o) -- AO0(oo). (41)

with AO(o) given by Eq. (39).

II
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Appendix D shows that Eq. (13) has the approximate solution

'10, [ep- e £.%,tanA0N(oo), n= 1,, ... M. (42)
r--I p-r p-n

In the remainder of this section we assume that s = 0, allowing us to replace A0(o) by AO in Eq.
(42).

Feeds with Identical Imperfect Modules

If all the modules in the CAM network are identical, even though they are imperfect, we have

- E. (43)

independent of the module index n. Subject to Eq. (43), Eq. (42) becomes (cf. Eq. (D26))

AO. ; e n - (M + )/2) tan A0, n - 12, ... M, (44)

where
- 2(F - B)(F + B).

In Fig. 10 we present values predicted by a computer solution of Eq. (4), for the parameter values

(e, A4, M) - (10', 65* 9). (45)

We observe from Fig. I I that Eq. (44) agrees fairly well with the numerical solution. In Appendix D
we calculate a second-order correction to Eq. (44) that results in an even closer fit to the numerical
solution.

4.

V

20

1 2 3 ,4 5/ ! I

-2*

Fig. tO - Equilibrium phase error for an 8-module feed with identical
imperfect modules, obtained by numerical solution of Eq. (4). Parameter
values assumed are (e, 40, M) - (0.01, 65*, 9).

12
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(I)!

0.2

0-

-0.2 -

-0.4 --

Fig. I - Difference between exact value of Ao,, as given in Fig. 10, and
value of A0, obtained by two approximate formulations. The first-order
approximation 4,I) is given by Eq. (44); the second-order approximation
14o(2) is given by Eq. (D41).

We note from Fig. 10 that the phase increment per module AO, varies from a minimum of

A01 = (A.01 + AO) =-- 60',
to a maximum of

AOM (A.0M + A) =c 700,

across the network. Thus, a systematic imperfection of 1% in the power split ratio gives rise to a phase
inaccuracy of 1-5'. However, smaller phase errors are obtained for smaller phase gradients, A < 650,
due to the tan A0 factor in Eq. (44).

Defining a mean-square phase error as

-46 sn (46)1Mrms""" ( n2'46

it follows from Eq. (44) that (in radians)

AOrms - E tan AO f-21 J]2 M. (47)

For our previous example, Eq. (45), we calculate

AJrms - 3.2 (48)

Random Imperfections

Rather than take e, as a known function of n (e.g., Eq. (43)) we now assume that the coupling
coefficients F, and B,, are independent, identically distributed random variables. The quantities *,, are
thus also independent and identically distributed,

E(EPEk - , 9

where EH. is the statistical expectation operator.

13
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We show in Appendix E that the following approximate relationship ob'ains 'Oetween the statistics

ofE and those of F,

o,,= -vr x 10- 2 A, (50)

where A is the percentage fabricational error,

A IOO(a, -/t-). (51)

rhe quantity 0., in Eq. (50) is the standard deviation of iE,; quantities al and /it in Eq. (51) are the
standard deviation of F, and the mean value of F,, respectively.

The variance of the phase error is defined as
2 = E(A.0 2 ) - [E(A,0,)J 2. (52)

It is shown in Appendix D from Eqs. (42), (49), and (52) that (in radians)
1/2

', tan A -i2" M111 + 12M-2In - (M + )/2111/2. (53)

Equation (53) displays the expected symmetry about n - (M + 1)/2. The minimum value of a-, is
obtained at the center of the array: from Eq. (53)

crmin - min o,, ==a, tan A4 -1 j MO2 . (54)

Equation (54) bears an interesting resemblance to Eq. (47): however, it should be remembered that
.Arms was defined on the basis of a spatial average, Eq. (46), while the values of a,, n = 1, 2, ... M,
are established as ensemble coverages over the statistics of F,.

From Eqs. (50), (51) and (53) we obtain (in degrees)
I )1/2

o. - 0.234 A tan &0 M 112 I + 12M -2 [n - (M + 1)/2121 n = 1, 2, ... M. (55)

We find from Eq. (55) that the RMS phase error is minimum at the center of the array,

0min - 0.234 A tan AO M 112 , degrees, (56)

and maximum at the edges of the array

0max -- 2(0 - 0.75AM-)0min. (57)

We find from Eqs. (56) and (57) that when

(A, M, A0) - (%, 9, 45,

the minimum and maximum RMS phase errors are

0rin - or5 - 0.70,
and

0.max " 0. I" 0 19- 1.29 .

Thus, a 1% RMS error in the power splits gives rise to about a IV RMS phase gradient error.

MODULES WITH SELF-COUPLING

Our analysis thus far assumes that the coupled module lattice comprises of amplifier/limiter
modules each configured as shown in Fig. 3. However, alternative module structures are conceivable,
such as that depicted in Fig. 12. Comparison of Fig. 12 with Fig. 3 shows that the only difference
between the two structures is the presence of a self-coupling path in Fig. 12.

14
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I I
I I

I I

I I
I II, I
t-*+

Fig. 12 - Amplifier/limiter module with self-coupling

A transient analysis of CAM lattices composed of self-coupled modules is given in Appendix F.
It turns out that the self-coupled module, Fig. 12, has less desirable performance characteristics than
the simpler module analyzed previously.

In brief, we find in Appendix F that (cf. Eq. (F34))

160.() - A0a(O)l,,e - '/  (58)

for self-coupled modules, Fig. 12. The settling time T in Eq. (58) is given by

T, - r + 1 ' sec A qJ (59)

where -, - M 2/5 is the settling time for modules without self-coupling, Eq. (34). Stable equilibrium
phase distributions exist only for 0 < A , < v/ 2 when F > 0; stable distributions exist only for 7r/2 <
A6 < ir when F < 0. It follows from Eq. (59) that

T, > 7, (60)

always, i.e., modules without self-coupling settle faster than modules with self-coupling.

Figure 13 depicts the transient development of A9 1(r) obtained by means of the theory developed
in Appendix F, for the same parameter values as Figs. 7 and 8. Comparison between Figs. 13 and 8
shows that the phase distribution for self-coupled modules evolves more slowly with time and is tem-
porally smoother than the phase distribution of modules that lack self-coupling.

According to Eq. (59),

0 settling is faster for strong coupling (large F) than for weak coupling (small F). However, settling
time cannot be decreased indefinitely by increasing F once Fcos A0 >> I further increases in F
provide no further improvement. We find that

Is
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65"

t, Fig. 13 -- Transient development of A01(7.) for a self-coupled CAM

, lattice. Assumed parameter values are (M, A~ o , aml(O)) - (9, 60° ,

45°), for all curves. Strong coupling, F - 10, results in faster settling
than unity coupling. F - 1. Solid curves obtained by numerical solu-

64* -tion of Eq. (FI). dashed curves obtained by one-mode approxima-
64' -tion, Eq. (F34). Solid and dashed curves for F -10 are too close to

distinguish on this plot.I Ii

0100 200

lira T - 7,s (61)
F--e

i.e., we can do no beter than the setFling 3ime obtainable by eliminating t he self-coupling. Also,

* settling ime becomes progressively longer, approaching infinity, as Are approaches 90( .

The longer settling time, Eq. (60), and the dependence of settling time on phasing, Eq. (59), are
undesirable attributes that lead us to favor modules without self-coupling over modules with self-

coupling.

TWO-DIMENSIONAL ARRAYS

We now briefly discuss how our results for I-D CAM lattices can be extended to 2-13 structures,
appropriate as feeds for 2-13 phased arrays.

We adopt an abbreviated convention for depicting CAM larices, as illustrated in Fig. 14 for the
previously analyzed t-D structure. The empty circles in Fig. 14 denote amplifier/ limiter modules ter-
minated by antennas, filled circles denote modules with nonradiating terminations. Thus, Fig. 14 is
equivalent to Fig. 2.

eXp 10 aXp J 341,

Fig. 14 -- One-dimensional CAM lattice. Empty circles denoteamplifeer/ limiter modules terminated by an antenna filled circles denote
modules with nonradiaing terminations. This figure is equivalent to Fig.

2.

16
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Figure 15 is a 2-[) generalization of Fig. 14. Based on results already given, it is easily shown that
the equilibrium phase distribution of the Fig. 15 lattice is the desired 2-I) linear phase gradient. We
can see by inspection that the settling time for the 2-I) square lattice must satisfy the constraint

T',(I-D) < r,(2-D) < 2T",(I-D).

where

T, (I-D) - M 2/5 is the settling time of I-D edge lattice,

and

r, (2-D) is the settling time of 2-D lattice.

exp jA#V @P 12(A#B+ &#d)

oxp JO exp12A*,6#
Fig. 15 - Two-dimensional CAM lattice suitable for excit-
ing a 2-D phased-array. While only three phase-shifters are
required to excite a rectangular structure of arbitrary size,
settling time increases as the square of the largest linear
dimension of the lattice. Thus, additional phase-shifters

may be required to satisfy bandwidth requirements.
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Appendix A
THE PHASE DIFFUSION EQUATION

Taking the imaginary part of Eq. (4) we obtain
sin 0,,(r + 1) - NV, (7) -S,f(), (Al1)

w e e b y d f n t o ,S ( T ) - B ,, s i n 0 , + ( ) + F . s i n 0 . -( ) . ( A 2 )

Equation (A2) may be rearranged to obtain,

S,,(r) - 1(8B + F,,)(sin 0,+1 + sin 0,,-) + (B,-F,,)(sin 0,+, - sin 0,-,). (A)2 2
Applying some standard trigonometric identities to Eq. WA),

S, (7) - COS -L(0,+ + 0.-1) COS-L(0,+ - 0,-)

f(B., + F.,) tan i9 + 0.- 1) + (B,, - 1,,) tan 1(~ - ) (A4)[
2 2

Similarly, taking the real part of Eq. (4) we obtain

cos 0 ,(r + 1) - N,'r C. (7-), (A5)

where, by definition,

C, (7) - B, COS 0,+ 1 (7) + F.,CO c .- O,(7). (A6)

Equation (A6) can be recast as

C.(7) - COS -(0.+i + 9.-d COS -(G.+l
2 2

((B,, + F.) - (B. - F.,) tan -L(9,+, + 9,,.) tan W-0,~ A)

Dividing Eq. (Al) by Eq. (AS), and substituting Eqs. (A4) and WA) for S,(7) and C,,(T),ftan 4.(O,, + e ,, ta (0,+ 1 -9.d
tan 0,,(7 1 E, a-(,~ a ( ,, (A8)

1 2 2 o,) 2 +

where

ell =21F+B (A9)

We see immediately from Eq. (A8) that, for F,, - 8,,

(7, + )-L 1I0,+ 1(7) + 0,_ 1 (7)J e, -0. (AI10)

18
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Subtracting 0,,() from each side of* Eq. (A 10),

(+ 1) - 61. (T) I - -1 [0,, 1(T) - 20,(rW + 0, 1 (,r). (Al11)
2

Equation (All) has che form of a one-dimensional heat flow equation in which the time and space
derivatives have been replaced by finite differences. We refer to Eq. (All1) as the phase diffusion equa-
tion for perfect modules, i.e., modules for which e,, -0.

More generally, further simplification of Eq. (AS) when e,, * 0 requires that we assume

2 mtan 0,1)+ << 1 , (A 12)

so that

-e, tan 14, - 9, 1)=alI E, tan 10.,- '.d(A 13)
2 2 12 2

It follows from Eqs. (AS), (A 13), and the trigonometric equality

tan (A -B) - tan A -tan B
I + tan A tan B'

th t ,,(T + ) 0,I T + t9,,( ) - E tan -10n+ () - .I(r)1} (A 14)

We refer to Eq. (A 14) as the general phase diffusion equation.
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Appendix B
EQUILIBRIUM PHASE DISTRIBUTIONS

ANALYSIS

For a given initial phase distribution, Eq. (20), and a specified step-increase in the boundary phas-
ing at r = 0

a,(0) = mod2,,(Ok - 0 ), (BI)

the CAM network may evolve either of two possible phase distributions (cf. Fig. 5). We presently
address the question of which of these two final phase distributions is ultimately established.

We have found by computer simulation that the parameter s in our analytically derived equili-
brium phase distribution, Eq. (19), can be determined by inspecting the phase distribution after just a
single delay time, T - 1. Only 8M-, one module removed from the point of disrupted excitation, has
changed from its initial value at this time. Defining the time gradient of phasing as

a,(7) = mod2,(9n(7) - O(_" - 1))- (B2)

we find that {-0
aM-,i(I) =- mod 2,rOuM-.(l) - Om-(0) 1> V, s - (B3)

The meaning of Eq. (B3) is interpreted with the aid of Figs. BI and B2. Assuming that the phase
distribution is given by Eq. (20) at time r < 0, we must determine whether 0_j (1) is greater or less
than oret0. First, we note that

and0,(0) - 0,,(-1), n -= 0, 1, 2,. . (M - 1), (B4)
and

0O(,)-On(0), n-0, 1,2 .... (M-2), (B5)

since the phase disturbance initiated at (n, T) - (M, 0) propagates at the rate of one module per unit
of normalized time. Comparing Fig. BI and Fig. 5, we see that Fig. BI corresponds to an incipient
s - 0 phase distribution. Similarly, comparison with Fig. 5 shows that Fig. B2 corresponds to an inci-
pient-s - I distribution.

Setting (n, T) - (M - 1, 0) in Eq. (4) we obtain

ej m - t(l - NM- 1(0)FMI[eM(°) + eJ M-I°(0 ]. (B6)

Multiplying both sides of Eq. (B6) by exp [-j0m_. (0)) we obtain

N...1- (0)FM..._.IeiAtmW + e-iM-1(J, (B7)

where am-,(l) is defined by Eq. (B2) and the quantities AO,(T-) are defined by

0,(T)- (). (18)

From Eqs. (B4) and (B8)

AOM..1 (0) - 04f(-l) - M-2(--). (B9)

From Eqs. (B9) and (20),

AOM1I(O) - 4,0. (BI0)

20
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: MA #0

o 1 2 3 4 5 6 7 S 9

Fig. B1 - Incipient S - 0 equilibrium phase distribution. Circle (0) denotes
value at 7 - 0. Cross (x) denotes value at 7 - . Triangle (4) denotes
values that are the same at T-r 0 and 7 1 .

S. aMA4

x

(MA* -2w)

0 1 2 3 4 5 6 7 a 9

Fig. B2 - Incipient S - I equilibrium phase distribution.
SymbolsO0, X, and A as in Fig. BI.

Similarly, we can show from Eqs. (5b), (84), (B8), and (20) that

Ae m- A-00 + M(A4I - A00 ). (BI 1)

From Eqs. (BI) and (5b)

aMw(0) - mod21 (0 OH') - M (AO, - A00)* (13l2)

Substituting Eqs. (B10) and (BI 1) into Eq. (B7), and making use also of Eq. (1312), we obtain

ea IM- Nu- () Ftf- u e"OeJa~m( + e-J"OI. (B13)

Equation (B313) is given a phasor diagram representation in Fig. B3, for positive coupling (Fw..1 > 0).

We see from Fig. B3 t hat a I ~) < ir so long as

0 < a Mf(0) < (Or - 2Ao0). (1314)

In interpreting Eq. (13l4) we recall that ctv,(O) is the change in edge phasing imposed by (he phase-
shifter, as given by Eq. {1312). If we do not increase the edge phasing by too large an amount, Eq.
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aM (0)

Fig. B3 - Phasor diagram derived from Eq. (813), assuming F > 0. The
S - 0 phase distribution (cf. Fig. 5) evolves when angle aM_.(I) < ir,

i.e., for 0 < am(0) < (ir - 2AOO).

(B14) will be satisfied and the s 0 phase distribution will evolve after a period of time (cf. Fig. 5).
However, if the edge phasing is increased to such an extent that Eq. (B14) is not satisfied, we find
instead that the s = I phase distribution will ultimately evolve.

Figure B3 and the conclusions derived from it pertain to positive coupling (F > 0). The
corresponding phasor diagram for negative coupling (F < 0), also derived from Eq. (B113), is shown in
Fig. B4.

In general, the equilibrium phase distribution can be predicted from Eq. (19) and the following
set of rules for assigning a value to the parameter s.

For positively coupled modules (F > 0; 0 < A40 < ir/2),
, .<) < (v- 2A460)

s- 1, otherwise.(B )

For negative coupling (F < 0; sr/2 4 40 < ir),

0, a (O) < (3r - 2A 0)

1, otherwise. (B6)

Fig. B4 - Phasor diagram derived from Eq. (B13), assuming F < 0.
Note that AO, > 90'. The S - 0 phase distribution (cf. Fig. 5)
evolves when am-,(I) < t', i.e., for 0 < aM(O) < (31r - 2A40).
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PHASING UP (s = 0 Phase Distributions)

By "phasing up" we mean the process of modifying the edge phasing to achieve a new equilibrium
phase gradient that is larger than the initial gradient, A,, > A0,1. Inspection of Fig. 5 shows that phas-
ing up corresponds to the establishment of an s = 0 phase distribution.

From Eqs. (19). (21), and (23) (assuming F> 0),

Aq. = A0o + [(aM(0)/MI, (BI 7a)

subject to the requirement that

0 < am(0) < (v" - 2Ao), (Bl7b)

where Ao is the initial phase gradient, AO,, is the new phase gradient, and a41 (0) is the step-change in
edge phasing. According to Eq. (B17), the new phase gradient is proportional to the step-change in
edge phasing, aM(O), so long as aM(O) is not too large. While Eq. (17) is applicable only to positively
coupled lattices (F > 0), an analogous formulation is readily derived for F < 0. The upper limit on
A,9, established by Eq. (17) is

A0,, < [A40 + (7r - 2A, 0 )/M]. (18)

For example, we assume that

U00, M) - (60O0 9), (819)

i.e., that we have an 8-module feed initially phased to 600 per module. If we step-increase the edge
phasing by just less than the upper limit indicated in Eq. (BI7b), say,

aM(O) = 0.99(7r - 2A~o) = 59.4', (B20)

the lattice will eventually settle into a new phase distribution

A., = 600+ (594-/9) = 66.60, (B21)

just less than the upper limit established by Eq. (18), A9, < 66.67 ° . If we attempt to increase AO,
above 66.67 ° by step-increasing 0M by an amount am(O) > (7r - 2AOt), the phase gradient decreases
rather than increases, as discussed below.

PHASING DOWN (s = I Phase Distributions)

By "phasing down" we mean the process of modifying the edge phase OM to achieve a new equili-
brium phase gradient that is smaller than the initial gradient, A9, < A O(). Phasing down corresponds to
the evolution of an s = I phase distribution (cf. Fig. 5).

From Eqs. (19), (21), and (23) (assuming again that F> 0),

A., - AO0 - [27" - aM(O) /M, (B22a)

subject to the requirement that

(7r -- 2A4 0) < aMf(0) 27r. (B22b)

where AO), A0,, and aV(0) are defined as in Eq. (B17). The lower limit on A0, established by
Eq. (122) is

A., > 1A4 - (7r + 2A4()/M]. B23)

23

-g . ° .-. -- -- -



RICHARD A. STEINBERG

For example we assume (Al,, M) = (60', 9), as in Eq. (B19), and that the edge phasing is
step-increased by

at,(O) = 1.01 (7T - 2A~o) - 60.60. (B24)

We find from Eqs. (B19), (B22a), and (B24) that the lattice eventually establishes a uniform phase gra-
dient

AO - 600+ (60.6 ° - 360")/9- 26.73* (B25)

just greater than the lower limit obtained from Eq. (B23), A0. > 26.67*.
We have seen that step-increasing the edge phase 0M by 59.4* increases the phase gradient from

60* per module to 66.6* per module (cf. Eqs. (B19), (B20), and (B21)). A slightly larger edge phase
increase of 60.6* decreases the phase gradient from 60* per module to 27* per module (Eqs. (B24) and
(B25)).

PHASING LIMITS AND MULTISTEP PHASING PROCESSES

Starting from an initial phase gradient of A 0 per module, it follows from Eqs. (B18) and (B23)

that there is no step-change in edge phase O that will develop a phase gradient outside the range

[A0o - (ir + 2A0 0)/M! < A, < [A0 0 + ( " - 21o0 )/MI. (B26)

Assuming for example that (A0 0, M) = (600, 9) we obtain

26.670< AO, < 66.67. (B27)
This apparent limitation on the range of AO, is actually readily overcome. A multistep process can be
used to sweep the phase gradient outside the range indicated by Eq. (B26).

Considering the phasing up process, for example, we generalize Eq. (B 17) as follows:

'10 N = , j + faj +'0/MI, (B28a)

subject to the requirement that

0 < aG +t) < [wT - 2ASO °, (B28b)

where
'&90° ( 0) 0, (B28c)

and where AO , i = 1, 2. is the equilibrium phase gradient that evolves after the ith step-
increase in edge phasing, aw .

Continuing our previous example, we find from Eqs. (B28), (B19), (B20), and (B21) that

aW - 59.4 (B29)
AO.") 66.6

A new phase gradient &0(
2
) > AO(') may be established by initiating another step-increase in edge

phasing, so long as we observe the constraint imposed by Eq. (B28b). Choosing, for example,

aU)- 0.99[7r - 2Aso()J - 46.33 0 (B30)

we establish a new equilibrium phase gradient

A0 1
2
)- 66.60+ (46.3379) - 71.75". (831)

once the transient has decayed. The process may be continued, and ever-increasing phase gradients
thereby achieved.

24

Ak.



NRL REPORT 8492

We obtain the multistep prescription for phasing down by generalizing Eq. (B22),

A61(1+1 =- A) - 127 - aA+ A4, (B32a)

subject to the requirement that

[r - 2Ao,0 < a, + ' K< 2Ir. (B32b)

where AO and a +1 are defined as in Eq. (B28).

The maximum increase in the phase gradient when phasing up is computed from Eq. (B28) as

LO 0+ 1) - AO'.I < fir - 2A0, 11/M. (B33)

The maximum decrease in the phase gradient when phasing down is obtained from Eq. (B32) as

- AG ('+')I < fir + 2Ao n]/M. (B34)

Comparing Eqs. (B33) and (B34) we see that phasing down the lattice generally requires fewer
steps than phasing up. Considering our previous example, Eq. (B19), we see that the lattice can be
phased down (60* - 26.7) = 33.3* in a single step. By contrast, a single step-change in the edge phas-
ing can phase up the gradient by no more than (66.6* - 60*) - 6.6'.

An important conclusion derivable directly from Eq. (B33) is that as AO,(' ) approaches 900 per
module, IAO(' 4 I'  - AO('"1 approaches zero, and no further increases in the phase gradient are
achievable. Thus, phase gradients 900 < AO,, < 180* are unattainable for positively coupled lattices.

Our discussion following from Eq. (B17) pertains only to positively coupled lattices, F > 0. A

parallel formulation for F < 0 shows that

" phase gradients 0* < AO, < 90' are unattainable with negatively coupled lattices, and

* negatively coupled lattices can be phased up over the range 90' < AO,, < 1800 much more rapidly
than they can be phased down.
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Appendix C
TRANSIENT ANALYSIS

In this appendix we derive an exact solution to the equation

#.(T + I)--110+1(7) + @.-1(7)], (C0)2
subjet to the initial conditions

0.() -nA#j0 . n-I1, 2. ... M. 7 <O0 (C2)

and boundary conditions

0e(7) -0
-~ >A~ao 0. (C3)

Also, the equilibrium solution of Eq. (CI) in the limit of infinite time is given by

9(o)-nag. (-), (C4)

where M. (co) is a constant independent of n.

We begin our solution of Eq. (Cl1) by transforming to a new phase variable fi(7), subtracting the
known equilibrium value 0,(-o) from 0,(r),

tp(7 0,(T) - e.(oo) - 0,,(7) - nA0.(oo). (MS
Thus, . (7) represents just the transient part Of 0. (7),

lim q$.(7) - 0. (CO)

Applying Eq. (C5) to Eq. (CI) we obtain an identical difference equation for *.r)

*"(& + I) - 11qW'.+ 1(7) + 0,1..(01I. MC)

The new boundary and initial conditions are obtained from Eqs. (C2). (C3), and (C5) as

07)- 41,W(7) - 0, (C8)

and

4~~ ,, (0) - n 1100j - AG~O,, n - 1, 2, . (M - I). WC9)

The point of our variable transformation, Eq. (CS), is to provide us with homogeneous boundary con-
ditions, Eq. (C8), after which the initial value problem becomes solvable by separation of variables.

We look for solutions to Eq. MC) of the form

ItI.(T) - Z,,f(7r). (CIO)

Substituting Eq. (CIO) into Eq. MC) we obtain

ZJf(r + 1) - -(Z,,,l + Z,.. 1)f(T).
2

Thus,

f(,r + l/f () -(Z,+ I + Z, . 1)/ 2 Z,- (CI 1)
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where the parameter X is dependent on neither r nor n. From Eq. (CI I)

.1'(r + I) = Af(r). (C12)

Equation (C2) is solved either by inspection or by standard difference equation methods to obtain

J'(r) f()XT  (C13)

where f(0) is an undetermined constant.

Equation (CII) also provides us with an algebraic eigenvalue equation for Z,

(Z,, + Z ) = XZ, n = 1, 2, ... (M - 1), (Cl 4)

where, from Eqs. (C8) and (CIO),

=o Zx = 0. (C 15)

As may be verified by substitution, the eigenvalues Xk and corresponding eigenvectors Z,(k) of Eq.
(C14) are

kk - COS (kir/M), (C16)

and Z =
k) _ (2/M)t/ 2 sin (irkn/M), (C17)

for k = 1, 2, ... (M - 1). Eigenvectors (C17) satisfy the orthogonality condition

-= 80 k -I (C18)

The general solution of Eq. (C7) is obtained from Eqs. (CI0) and (C13) as
MI-t

,,) A Z)k) , (C19)
k-1

where the constants Ak must be determined from the initial conditions. We set 7 - 0 in Eq. (C19).
multiply by Z11 ), and sum over index n to obtain

Ai- I M-1 U,-1
= - AI Zn(k)ZnI (C20)

M-1 k-t f-

Thus, from Eqs. (CI8) and (C20),
U-I

Ak I *'o Z. * ). (C21)

Substituting Eq. (C9) for tp.o and Eq. (C17) for Zk) into Eq. (C21) we obtain

Ak - (2/M)/2[A9'(oo) - A 001 1: n sin (rkn/M). (C22)

The summation in Eq. (C22) can be performed analytically, with the result

A4 - (M/2)1/12[&O(oo) - Ao(-1)kcot(rk/2M). (C23)

From Eqs. (C9), (C23), (CI6), and (Cl7),
M-1

(- 1 1 ,(), (C24)
where A-1

(k - [AG(oo) - oA0(-I )kcotj Irkjsin rk cos . (C25)
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Since

s c I (M -k)w

we see from Eq. (C25) that i4k)(r) has the same time dependence as t,(Mk(T). This suggests writing
Eq. (C24) in the form

[M/21
,(T) = ,() + 0 (M-)(r)l, (C26)

k-1

where [M/21 is the integer part of 12,

(M/2) M even
M/21 = I(M-1)12, M odd. (C27)

We can show from Eqs. (C25) and (C26) that

= 2[AO,,(oo) - A (_ ls (nlkl/M) 1{Icos (k1)/M)] "+  (C28)k-1 sin (krnIM)

where
-II+ (- 1 )"+T±+ 1 . (C29)

Equation (C28) is the exact solution of Eq. (Cl), subject to Eqs. (C2) and (C3), the initial conditions
and boundary conditions, respectively.
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Appendix D

UNEQUAL FORWARD AND BACKWARD COUPLING

FORMULATION

The equilibrium phase distribution of the CAM network is the solution of Eq. (13),
1

AO,, , - 40, + e,, tan - (Ao+, + AOG), (DI)
2

where

e, -- 2 . - I . (D2)

We now define a quantity A4,, that measures the degree to which the actual phase gradient A0,' departs
from the ideal, i.e.,

&0- A0 - A0 . (D3)

From Eqs. (DI) and (D3)

&0,.+, AO. + e,, tan '1O° + (A01.+1 + A011) ,(134)

where, from Eq. (19),

A 4 - ,0 - s 2r/M), n - 1, 2. M. (D5)

If the CAM network is to be useful for exciting a phased array antenna, it must be true that
I-( b + + A#.) << A90 ,  (136)

from which we can show that

tan JA0 ° + I (A4,+j + Ao,) -- tan A0° + - (AO,+, + A¢.) sec 2 A00 .  (137)

From Eqs. (D4) and (D7),

AO.+, - A4, + E. tan AO° + I E.(A4,6.+ + Ao,,) sec 2 A00. (D8)

Since development of an exact closed form solution to Eq. (D8) appears quite difficult, we pro-
pose an iterative solution,

Q.(+ 1) G+ 1) +,tnA90 ° + C2 .Ac,+ Aj0. . (9
n.+ A , ,t + (aA n I (), se

In the limit of fabricationally perfect modules,
lim A9. - A0111.  (DI)10

The zero-order iterate AC, 0) is thus obtained from Lqs. (1)3) and (1)10)

'u6 (0) - 0. (DI )
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The first-order iterate follows from Eqs. (D9) and (D I1),

,&0 Aon) +,e, tan AO . (D12)

We simplify notation by dropping the superscript on A40, and by setting s - 0 in Eq. (D5) to obtain

0, + e, tan A6. (DI3)

The solution of Eq. (D13) is
M

A46,- K - tan A# : *,. n - 1, 2 .... M, (D14)

as may be verified by back substitution into Eq. (D13). The constant K in Eq. (D14) is independent of
the module index a.

Since the values of 00 and Ou are imposed by the phase control element (cf. Fig. 2), they are
independent of whether the modules are fabricationally perfect or imperfect; thus,

0 0 °0

OU- e . (D 5)
Defining

b,- 0, - 0°, (DI6)

boundary conditions on 0, are obtained from Eqs. (D15) and (D16),

00 o 0 u" 0. (D17)
We impose these boundary conditions on Eq. (D14) to determine the value of K.

Toward determining the proper value of K we note that
M M1: &'0 - F (CO. - 0,I) - (60M - 40) - o, (D 18)

01-I M-I

where the final equality in Eq. (D18) follows from Eq. (D17). However, from Eq. (D14),
MA MM1: &0. - MK - tan A46 1 :e,. (13I9)

n-I n-I p-n

Thus, from Eqs. (D18) and (D19)

- : e tanA& (D20)

Substituting Eq. (D20) into Eq. (D14) we obtain the general first-order approximate solution of
Eq. (D8),

b - ep- f. tan A$, n - 1, 2, .... M. (D21)
M -I p-r -

We obtain the solution for #, by noting that, analogous to Eq. (D18),

A, -. (0. - 0) - 40., n - 1, 2, .... M. (D22)

30



NRL REPORT 8492

From Eqs. (1321) and (1322)

0,-- -- t tp- ,e] tan A4, n = 1. 2,. .A. (1323)
-- r-1 p-r

Equation (D23) correctly reproduces the boundary condition at n = ]. namely ,== 0. However, we
should not be worried that (he boundary condition at n = 0 is not reproduced since Eq. (D22) (from
which Eq. (1323) was derived) is not valid for n - 0.

Finally, we should not be concerned that the quantity eg appearing in some of the above equa-
tions is not strictly defined, since terms in e identically cancel from our final results, Eqs. (D2) and
(1323). Thus, Eqs. -(D21) and (1322) can each be written in a form in which ew does not appear:

M.. T_. At- I.'
Sp -tan tanA,-I P-, P- , n n- 1, 2,.. (M - 1)

A4i- I -1I n-

r I p-r

ep ~ ~ i -ep tn.4
1-: p-, ,- : -- , 1 , 2,.. (M - 1)

0, n n- M.

The latter two equations evaluate identically to Eqs. (D21) and (D23), respectively. We generally
-prefer to work with Eqs. (D2) and (D23) for obvious reasons.

CONSTANT COUPLING RATIO

We presently assume that
e,- e, n- 1, 2, .... (M - 1), (1324)

i.e., we assume that all modules in the CAM network are identical, even though they are imperfect.
(We recall that, by definition, a perfect module is one for which F, = B,, i.e., e, = 0, n =
1, 2, .... (M - 0.)

It follows from Eq. (D24) that the summations appearing in Eq. (1321) are readily evaluated,

M 2
L m,- (U- " + De. (D25)

Substituting Eq. (1325) into Eq. (D2),

o. - - I, 2, ... M, (1326)

where
a,, = [n - (M + )121 tan AO. (D27)

We see from Eq. (D26) that the error in the intermodule phasing is minimum at the array center and
maximum at its edges.

In Fig. II we compare values predicted by Eq. (D26) with a computer solution of Eq. (4), for the
parameter values

(e, A, M) - (10-2, 650, 9). (D28)
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We recall that Eq. (D26) is a first-order approximation. Later in this appendix we calculate a
second-order approximation that greatly reduces the discrepancy between the numerical and analytical
calculations evidenced in Fig. 11.

TAPERED COUPLING RATIO

Perhaps the simplest type of nonuniform network is the linear taper, for which
e. - nel. n - 1, 2. .... (M - 1). (1329)

From Eqs. (D29) and (D13),

A, + nPe tan AO. (D30)

It can be shown that the summations appearing in Eq. (D21) evaluate as follows,

M I,
e - IM(M + 1) - n(n - 1)1. (D31)

and
! MM

-I 1 E (*1/6) (M + 1) (2M + I). (D32)

From Eqs. (D21), (D31), and (D32),

AO,- eb,, n- l, 2, .... A (D33)

where

b,[1-3n(n - i) -(M
2 

-)) tanA&. (D34)

To obtain AO, in degrees Eq. (D33) (like Eq. (D26)) must be multiplied by (180/ir).

We note that the value of n for which Eq. (D33) is equal to zero may be approximated as

no "- 0.5 + 0.577 M, Ab0- 0. (D35)

In Fig. DI we compare values predicted by Eq. (D33) with a computer solution of Eq. (4), for the

parameter values

(eI, A46. M) - (0.0025. 650, 9).

The predictions of the approximate analytic solution, Eq. (D33), appear quite close to the exact numer-
ical solution.

CONSTANT COUPLING RATIO: SECOND-ORDER APPROXIMATION

From Eqs. (D9) and (D24) we obtain

- 42 2) + e tan Aeo + I e(A4O.", + A¢ I ) sec2 A0o, (D36)

where A,"++ is the first-order approximation given by Eq. (D26). From Eqs. (D26) and (D27)

+1 -E n- 2 tan A4. (D37)
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4.-

Fig. Dl - Equilibrium phase error for an S-module feed with a linearly
tapered imperfection. Parameter values assumed are 41 60 M)-
(0.0025, 65*, 9). Solid curve obtained by numerical solution of Eq. (4);
dashed curve obtained by first-order approxtimation, Eq. (D33). Quantity
1.1, is defined only at integral values of n.

Substituting Eq. (D37) into Eq. (D36),

+4, e + tan &0 + e 21n _-M sec2 46 tan A4, (D38)

where we simplify notation by dropping the superscript from A0(2) and by substituting A0 for 400
(i.e., setting s - 0 in Eq. (135)). Equation (D38) may be written as

AOl 4, + E tan 44 + tiE1 tan AO, (D39)

where, by definition,

E El1 - Ie U sec2 A4

E= e2 sec2 AO. (D40)

The solution of Eq. (D39) may be written by superposing the solutions of Eqs. WD13) and (D30).
Thus, from Eqs. (D026) and (D 33), & . _ & '2 a l . D 1

where a,, and b., are given by Eqs. (D27) and (D34), respectively. We can show from Eqs. (D41) and
(D26) that

L&46.(') - 1 Un - (M + 0)/212 - WM2 - 0)/12)C2 sec 2 A4 tan 44. (D42)
2

As shown in Fig. 11, the second-order approximation brings our analytical results much closer to the
exact numerical solution of Eq. (4).

RANDOM COUPLING

Rather than take e, as a known function of n (e.g., Eqs. (1)24) and (1329)), we now assume that
the coupling coefficients F, and B, are independent, identically distributed, random variables. The
quantity e, is thus also a random variable as a consequence of Eq. (1)2).
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We denote the mean value and variance of a random variable X as and o, respectively. Thus,
by assumption, Al. = AB and 0r+f = oae , while A, and o-t are independent of the module index n,

=Ee, n - 1. 2. ... (M -I)

0-,= E{(f -tM,)'), n - 1. 2. ... (M - I). (D43)

The statistical expectation operator is denoted as E[] in Eq. (D43).

Since a simple relationship exists between E., F., and B, Eq. (D2), we might expect simple rela-
tionships to exist between their mean values and variances. These relationships are derived as Eqs.
(Eli) to (E15).

To simplify our notation we define

P.2 - E{A,.1, (D44)

= -(A, -,)'-- (p2 - A2).

An expression for A,1, the mean phase error, is obtained by applying the expectation operator to Eq.
(D21). Since the expectation operator commutes with the summation operations we find

A.(" IA.LM,- M tan AO. (D45)

"-I p-r p--n

Since the random variables e, are identically distributed, their mean values A, are all identical (Eq.
(D43)). Thus, Eq. (D45) evaluates precisely as for the constant coupling raio problem, Eq. (D24).
As a simple adaptation of Eq. (D26) we find that

Mn J,[n - (M + )/2] tan AO, n- 1, 2 ... (M - 1). (D46)

From Eqs. (D46) and (E14)

A" - 10-4A 2[n - (M + 1)/2] tan A4, (D47)

where A is the percentage fabricational accuracy, as defined by Eq. (E3).

For example, assuming that

(A, M, AO) - (1%, 9, 45 ), (D48)

we find the maximum expected phase error is just

max A. - A.m - 4 x 10-
4 (rad) - 0.0230. (D49)

n

Thus the mean phase increment is very nearly a constant,
E{AO,} - A. + A40 A. (D50)

From Eq. (D50)

E1O.1 "- n&. (51)

It is of interest to determine the extent to which we may expect the phase distribution AO, to
deviate from its mean, Eq. (D50). For this purpose we need to evaluate the second-order statistic
E[A91] - EIA0.ni. First, we note that

E(AO ) = E(Ae) - PL (D52)

as a consequence of the fact that

Aol, - A0,, + A0. (D53)
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We recall that A0 in Eq. (D53) is deterministic and is determined by the boundary condition. Eq. (5)"
i.e., Adh is determined by the phase control element in Fig. 2.

From Eq. (021).

P-_ tan 2 A0 . p,. (D54)

where

ij- qp l MM I (1355)
11 r IP-r Pn IjI S-i 4-S k-n i

Four terms are obtained when the multiplication inside the expectation operator in Eq. (D55) is per-
formed. Commuting the expectation operator with the summations, we find from Eq. (D55) that

p, L + R,, - Mn - En, (D56)

where

L-- - LLL. pEAJ, (D57)
r-i s-i p-r k-s

Rn 1: 1: E[EpEk]. (158)
p-n k-n

M. - " k E[EPeA ]}' (D59)
s-I p-n k-s

and

Enr= - p - E[.,]Ejk. (060)
r-I p-r k-n

Following our assumption that (F, Bn) are statistically independent of (F., B,,,). for n ,. we find
that

. p- k
E[EEk] -= COpk -, p0 k. (D61)

With the definition
M Af$"a 1: Y. 8 p.k, (162)

p-u k-v

it follows that Eqs. (D57) to (D60) may be written as

I (163)
M

,- Sn. (164)

M" - - X S1,, (D65)

and
E - S,1 . (066)

It follows from Eq. (062) that S, - S,,,. Thus, from Eqs. (1)65) and (1)66), we see that M, - E,.
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It can be shown from Eq. (1362) that

S,,= oQ,[(Mf + 1) - max(u, 0)], (1367)

where nmax (u, v) denotes the larger of u and v,

mnax(u, v) f -> (1368)

It can be shown from Eqs. (1363) to (1367) that

L - 0.,2.- M'(M +4 1) (2 M + 1), (1369)
'6

R. 0a.(M + I-nM), (1370)

and

M.-A. t'.MI[M(M + 1) - n(n- 1)]. (D71)
2

Collecting terms, it follows from Eqs. (D54), (1356), (D369), (D70), and (1371), that

P2- E((A.0,) 2J - (o,2 tan' AO)( + A-1)[. 3M + - + iu2(M + I)-J1 (1372)

We complete the square on n in Eq. (1372), to obtain

P.--a, tan A4 LM(l - M-.2) + AM-n - (M + 01112 (1373)

Equation (1373) clearly displays the expected symmetry about n -(M + 0)/2.

From Eqs. (1373) and (E15), and multiplying by (180 1wr), we obtain

1.2 A tan Ai46.j-L M(I - Md- 2) + AC'tn - (M + 1)/21) degrees. (1374)

Multiplying Eq. (D347) by (180/vf),

I j~ A2 tan AOIn - (M + 0)/2], degrees. (1375)

Froms Eqs. (1344), (D74), and (D75)

a2= (p 2 
- A2 p 2  (D376)

so long as

M A2 «<2 x 104. (1377)

Assuming that Eq. (1377) is valid, and also that
pj- 2 << 1, (1378)

we find from Eqs. (D374), (1376), (1377), and (1378) that

(E[(Ao,) 2 ] - [E(A.O,)1 2)"/2  (1379)

-0.234 A tan AOM"2'(1 + l2AC2[n - (M + 0)/2121)/", degrees. n - 1, 2.,. M. (1380)

We recall that A in Eq. (1380) is the percentage fabricational accuracy, defined by Eq. (E13)-, (M - 1)
is the number of modules, MAO, is the phase shift established by the phase control element in Fig. 2; n
is the module index; a,, is the root-mean-square (RMS) deviation of AO,, - 0, - 0,_ from its desired
value, AO, - AO,.
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It follows from Eq. (M80) that the RMS phase error is minimum at tihe center of the array and

maximum at its edges. From Eq. (D80)

min o, - 0.234 A tan AO M- /!. degrees. (181)

while

max o,, "- 21 - 0.75M-1)(min or,,), degrees. (D82)
n n

For the example of Eq. (D48) we find for the minimum and maximum RMS phase errors.

min o = = 0.70' (D83)

and

max or, = o (r - 1.29'. (D84)
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Appendix E
RELATIONSHIPS BETWEEN COUPLING STATISTICS

AND POWER SPLITTER ACCURACY

Our objective in this appendix is to derive expressions for the mean and variance of f,

• -2 F - BI (El)

in terms of the mean and variance of the power split coefficients F, and B.

As a matter of notation, the expectation operator is denoted as E[-]. The mean and variance of
random variable X are denoted as P-A and a- 2, respectively. We assume that random variables F. and
8. are independent and identically distributed. Thus

(E2)
(TF- Or8 ,

for all values of n.

Our results are obtained as a special case of a theorem appearing on p. 141 of Ref. El. We state
the general form of the theorem first.

If the random variable Z is a function of the two random variables Fand B,

Z = H(F, B), (E3)

the mean and variance of Z may be approximated by the following:
1A, H(IsF, IL) +- [(O~FH) a + (Q ,H) al (E4)

01 "- (6FH) ar + (Oa) 2 0j. (E5)

The partial derivatives 6F - -, etc., in Eqs. (E4) and (E5) are evaluated at (F, B) - ( AF MB)-

For the special case

Z - F. B- 1, (E6)
and making use of Eq. (E2), we find from Eqs. (E4) and (E5) that

Az i + (o-F/AF) 2,  (E7)
and

-- 2(OrF/F)2. (E8)

However, from Eqs. (El) and (E6)

At - I, (E9)

and

(2 _ ,2 (£10)
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From Eqs. (E7) through (ElO),

f - (GJtFM) 2. (El 1)

and
a', = f2 (o'F,/AF). (El12)

If we define the fabricational accuracy A as

A - 100 (oFI/f-) (percent), (El3)

Eqs. (El I) and (E12) become

,A. _ 10- 4 A 2,  (El4)

and

a,, - v1 x 10 2 A. (ElS)

For fabricational accuracies A "- 1%, we see from Eqs. (E14) and (EIS) that a, is about two orders of
magnitude larger than ju.. Thus, we are often able to ignore A,, regarding e as a zero-mean random
variable.

o , p- k
EIEP]kJ - a,8.k., -0. p0 k. (D61)
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Appendix F
MODULES WITH SELF-COUPLING

We can show that the transient phase distribution of modules with self-coupling, Fig. 12, evolves

according to the equation

el"(+1- N. (7) [e j?nfr + Bej~n+I(r) + Feo- 0,(Fl)

analogous to Eq. (4). We simplify the analysis in the remainder of this appendix by assuming equal
forward- and back ward-cou pl ing,

F - B. (F2)

With the definitions

0,()- -, (7) (7), (F3)

N =_N, ('), (F4)

a 0,,(T + 1) - 0,(T), (F75)

A a fAO,,l(7) + AG, (7)I (F6)
2

S =_-IA9,,+1fr) - '&0"(')], (F7)
2

Eq. (Fl) may be written as

e - N (I + 2Feis cos A). (F8)

Taking the real and imaginary parts of Eq. (F8) we obtain

sin a - 2NF cos A sin S, (F9)

and

cosa -N (I+ 2 Fcos A cos S). (F10)

Dividing Eq. (119) by Eq. (F171),

tan a 2F cos A c si .(11
ta I- 1+ 2F cos A c s nS SFII

Inspection of numerous numerical solutions of Eq. (Fl) shows that the spatial/ temporal develop-

ment of the phase distribution proceeds gradually after an initial short period of rapid changes. Thus,

la I - 10. (7 + 1) - 0,, (1) 1«< 1, T > 1, (F12)

and

SI 1 '&0'+j(7) - 40'(7)1 << 1, 'r > 1. (F13)

From Eqs. (F 12) and (175),

tan a a 0.O(,r + 1) - Oj(i). (F14)
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From Eqs. (F13) and (F),

sin S r S - [A,+ 1(r) - A,()]. (FIS)
2

and

Cos S =- 1. (F16)

From Eqs. (F13) and (F6),

A - [A0,+() + A0,(T)] A6 ,(). (F17)
2

Substituting Eqs. (F14) through (F7) into Eq. (F! ) we obtain
19( )-0W F cos A0O" [AO,,+,(-r) - A0,(T)|. WF18)I + 2F cos A .

Using our definition for A9,,(-), Eq. (F3), Eq. (F18) may be written as

[0.(r + I) - 0.(T)] -LC (r)[0+ 1(r) - 20,(r) + 0 1F19)

where

C,(7)= I1 + L F- sec A0(r)I. (F20)

Equation (F19) has the form of a I-D heat flow equation in which the time and space derivatives have
been replaced by finite differences. However, the solution of Eq. (F19) is complicated by the fact that
the "diffusivity" C',") is a function both of space and of time. Further simplification is achieved by
remembering that when " >> I the quantities AO,() approach their equilibrium values,

lim AO,(r) - 44,, (F21)

where we simplify notation by setting s = 0 in Eq. (19). From Eqs. (F19), (F20), and (F21)

0"(7 + 1) - -C[O,+1 (r) + 0,.1(7) + (I - C)O(7), (F22)
2

where

C- + I - 1 sec 41J. (F23)

In the limit F- -c we see that C- 1, and Eq. (F22) reduces as expected to Eq. (A 10). More gen-
erally, we solve Eq. (F22) by the same separation-of-variables method we previously used to solve Eq.
(A10), with the result

M-I
*- . AZ.10 (F24)

k-I

where

.k - C-k + (I - C) (F25)

and where 0/., A and Z.k) are given by Eqs. (CS), (C16), and (C17). Again, from Eqs. (F23) and
(F25)

lim Atk - Ak, (F26)

and Eq. (F24) reduces to our previous result, Eq. (C19).
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Assuming that the initial phase distribution is given by Eq. (C2) (cf. also Fig. 5) the expansion
coefficients Ak in Eq. (F24) are once again given by Eq. (C23). Analogous to Eqs. (C24) and (C25) we
now obtain

M-I

0"(7)- n(, ¢j,(), (F27)
k-i

where qo,( 2 1-E 11r..
ti'k)(T) A001co - 14 (...1 ) cot [- sin J~1n I - 2C sin2 j~j (F28)2M M I2MJ]

Equation (F27) is the exact solution of the phase-diffusion equation, Eq. (F22). However, Eq. (F22) is
itself only an approximation to Eq. (F), valid in the limit 7 >> 1. Thus, even if all (M - I) terms
are kept in our expansion for ,(T-), Eq. (F27), the result is still just an approximation. By contrast,
Eq. (C24) provides the exact solution to Eq. (C).

Another distinction between Eqs. (F27) and (C24) is in the eigenvalue spectrum that determines
the time-dependence of the space/time modes, q,*(k)(T). Previously, we found that the k-mode was
degenerate with the (M - k)-mode, i.e., that

=k - IAX.-kf. (F29)

Consequently, it was necessary to retain the highly oscillatory (M - 1)-mode in developing an approxi-
mation lo Eq. (C24). However, we now find that self-coupling has broken the degeneracy,

I9kI > IbM-kl (F30)

and that we need retain only the slowly varying k = I term in developing an approximation to Eq.
(F27). Assuming that (¢/M) << 1,

) -0(oo) - (2M/r)[Ao,(o) - atkl sin (nr/M)e - ' r
', (F31)

analogous to Eq. (33). However, we now have a different value for the settling time,

s IsI! + - I sec,&46 (F32)

where r = M 2/5 is the settling time for modules without self-coupling, Eq. (34). In general, when F
> 0, stable equilibrium phase distributions must have 0 < AO < r/2; when F < 0, we have 7r/2
AO < ir. It then follows from Eq. (F32) that

T, > % (F33)

always; i.e., modules without self-coupling settle faster than modules with self-coupling.

Instead of Eq. (35) we now obtain

Aijr) - AO.(oo) - 2 (40,(o) - A460 cos (nt/M) e - I t , (F34)

where T, is once again given by Eq. (F32). Comparing the n-dependence of Eqs. (35) and (F34) we
see that Eq. (F34) is missing the highly oscillatory factor 1A that represents the contribution of vM-i)

to Eq. (35).

We have compared the one-mode approximation, Eq. (F34), with some exact computer solutions

to Eq. (FI). In performing these calculations we assume that

(M. A~o, am(O)) - (9, 60°, 451) (F35)

as for Eq. (36) and Fig. 8. Figure FI presents a comparison between the analytic and numerically
derived phase distributions as a function of the module index n for two particular values of time
(7 - 70 and r - 100).
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/ 0-0

65' n
I 2 3 4 5 6 7 9

Fig. F1 Phase distribution for a self-coupled 8-module feed at
two values of time (r - 70 and r - 100). Assumed parameter
values are (M. A00, am(0). F) - (9, 60% 45 °, 1). Phase values
connected by solid lines obtained by numerical solution of Eq.
(FI), values connected by dashed lines obtained by one-mode
approximation, Eq. (F34). In the infinite-time limit a uniform
phase gradient is established, A4.(oo) - A# 65 o .

64* /

Compared with Fig. 8 we note from Fig. Fl that the phase distribution for self-coupled modules
evolves much more slowly with time and is spatially smoother than the phase distribution of modules
that lack self-coupling.
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